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Abstract
Delamination is a predominant failure mode in continuous fiber rein-
forced laminated composite structures. One type of delamination is the
transverse crack tip delamination which originates at the tip of transverse
matrix cracks. An analytical model based on the subiaminate approach and
fracture mechanics is developed in this paper to study the growth of such
delaminations. Plane strain conditions are assumed and estimates are
provided for the total strain energy release rate as well as the mode 1 and
mode II contributions. The energy release rate estimates are used to
predict critical delamination growth strains and stresses by assuming a
critical energy release rate. These predictions are compared with experi-
mental data on T300/934 Graphite Epoxy [:25/90n]S laminates in the range
n=.5 to 8. A good agreement is demonstrated for the range of n where the
experimental observations indicate transverse crack tip delamination to be

the predominant failure mode.

Introduction

Fiber reinforced composites are now being used in a wide variety of
engineering structures. The concept of directional strength and stiffness
has been, for the most part, understood sufficiently to enable efficient
load bearing designs. One of the current major issues in composite struc-
tures is the understanding and prediction of damage modes and failure
mechanisms. A thorough knowledge of the failure mechanisms is bound to
lead to the design of efficient and durable structures. Failures in these

materials often initiate in the form of matrix cracks or delaminations.



Matrix cracks refer to intralaminar failures whereas delaminations refer to
interlaminar failures.

Matrix cracks usually occur within laminates where the fibers run at
an angle to the primary load direction. Hence, such matrix cracks are also
called transverse cracks. Based on the location and direction of growth,
two distinct types of delamination can be discerned. These two types are
called edge delamination and local or transverse crack tip delamination.
Edge delaminations initiate at the load free edges of the structure whereas
local delaminations start from a transverse matrix crack. In many cases,
both types occur concurrently with varying levels of interaction. It has
been observed in simple tension tests of uniform rectangular cross section
specimen (Edge Delamination test) that delaminations initiate along the
load free edges and propagate normal to the load direction. Transverse
matrix cracks running parallel to the fibers have also been observed in off
axis plies such as 90° plies. Such transverse cracks terminate where the
ply orientation changes. Delaminations can originate at the interface
where transverse cracks terminate. These delaminations, calied transverse
crack delaminations or local delaminations, grow normal to the transverse
crack from which they originate. In the case of 90° plies, the growth
direction is parallel to the load.

The growth process of edge delaminations and local delaminations is
often modelled using a fracture mechanics approach leading to the caicula-
tion of a strain energy release rate. This is because the strain energy
release rate can correlate delamination behavior from different loading
conditions and can account for geometric dependencies. The strain energy
release rate associated with a particular growth configuration is a measure

of the driving force behind that failure mode. In combination with



appropriate failure criteria, the strain energy release rate provides a
means of predicting the failure loads of the structure.
Several methods are available in the literature for analyzing edge

delaminations. These include finite element mode11ingl-3

, complex variable
stress potential approach4, simple classical laminate theory based tech-
nique5 and higher order laminate theory including shear deformationss.
Finite element models provide accurate solutions but involve intensive
computational effort. <Classical laminate theory (CLT) based techniques
provide simpie closed form solutions and are thus well suited for prelimi-
nary design evaiuation. Classical laminate theor& based techniques provide
only the total energy release rate, and thus in a mixed mode situation,
there 1is 1insufficient information to completely assess the delamination
growth tendency. A higher order laminate theory including shear deforma-
tions has the ability to provide the individual contributions of the three
fracfure modes while retaining the simplicity of a closed form solution. A
shear deformation model is available for edge delamination and has been
shown to agree well with finite element predictionss.

Crossman and Wang7 have tested T300/934 Graphite epoxy [125/90n]S
specimens in simple tension and reported a range of behavior including
transverse cracking, edge delamination and local delamination. O'Brien8
has presented classical laminate theory solutions for these specimen,
demonstrating reasonable agreement in the case of edge deiamination but
with some discrepancies in the local delamination predictions. An empiri-
cal finite element based combined edge and local delamination formulation
has also been proposedg. Its predictions, however, do not fully explain
the dependency of the critical strain on the number of 90° plies.

In this paper, a shear deformation model is developed for the analysis

of local delaminations originating from transverse cracks in 90° plies
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located in and around the specimen midplane. Plane strain conditions are
assumed and thickness strain is neglected. Delaminations are assumed to
grow from both ends of the transverse crack tip. The transverse crack is
treated as a free boundary and the delamination is considered to be the
crack whose growth behavior is to be modelled. The sublaminate ap-

10,11 is used to model different regions of the specimen. The

proach
resulting boundary value problem is so1véd to obtain the 1interlaminar
stresses, total strain energy release rate and energy release rate compo-
nents. Critical Tlocal delamination growth Jloads are predicted for the

[t¢5/90n]s specimen.

Analytical Model

The formulation is based on the sublaminate approach detailed in ref.
10. A longitudinal section illustrating the geometry of a generic configu-
ration is shown in fig. 1. The centrai region is assumed to be made of 90°
plies with an isolated transverse crack in the middle. Delaminations are
assumed to grow from both ends of the transverse crack, and towards both
ends as shown. From symmetry considerations, only one quarter of the
configuration is modelled. The modelled portion is divided into four
sublaminates as shown in fig. 2. The top surface (sublaminates 1 and 4) is
stress free. In order to simplify the analysis, plane strain conditions
are assumed and the thickness strain (sz) is set to zero. The consequence
of this combined with the fact that the w displacement is zero along the
center Tine is that w is zero in sublaminates 1,2 and 3. Further, this
approximation does not allow for the enforcement of boundary conditions on
the shear stress resultants, leading to incorrect estimates of the inter-
laminar normal stresses. The interlaminar shear stresses, however, are not

6’10. The assumptions lead to considerable

affected by this assumption
simplifications in the analysis. In spite of the simplifications, reliable
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energy release rate components can be estimated based on the interlaminar
shear stress distributionss’lo.

A generic sublaminate is shown in fig. 3 along with the notations and
sign conventions. The peel and interlaminar shear stresses are denoted by
P and T respectively with t and b subscripts for the top and bottom surface
respectively. The axial stress resultant, shear stress resultant and
bending moment resultant are denoted by N, Q and M respectively. A summary
of the governing equations is presented here for convenience. These are
derived for a generic sublaminate using the principle of virtual work in
Reference 12.

The x and z displacements within the sublaminate are assumed to be of
the form

u(x,z)=U(x)+zp(z) (1)

wix,z)=W(x). _ (2)

Here U represents the axial midplane stretching and W is the transverse
displacement. The shear deformation is recognized through the rotation B8.

The origin of the coordinate axes for the sublaminates is taken at the

delamination tip as shown in fig. 4. The equilibrium equations take the

form
N (# T Tp=0 (3)
Q_,+P~P,=0 (4)
M,x-o+(h/2)(Tt+Tb)=o. (5)

where h is the thickness of the sublaminate. The constitutive relations in

terms of the force and moment resultants are

N=R; U 8118 « (6)
Q=Agg (844 ) (7
M=B11U x*D11B & (8



where the Aij’ Bij and ﬂij are the classical laminate theory axial, cou-
pling and bending stiffnesses. The boundary variables to be prescribed at
the sublaminate edges are

N or U

Mor B

Q or W.
Additionally, at the interfaces between sublaminates, reciprocal traction

and displacement matching boundary conditions have to specified.

Solution Procedure

A detailed solution is provided in the Appendix. A brief summary is
provided here for convenience. The variables in sublaminates 1 and 2 are
coupled by their reciprocal interlaminar stresses denoted Tl and Pl and by
displacement continuity at their common interface. Assuming exponential

solutions for the axial force and bending moment resultants (N1=Aesx,

M, =Be>* etc.) leads to an eigen value problem involving the parameter s.

1
The eigen values turn out to be 0 and two nonzero values (say Sq and 32)

occurring in positive and negative pairs. Since the resultants maintain
finite values as x tends to large negative values (left end of sublaminates
1 and 2), the negative roots are dropped out of the solution.

The following boundary conditions from the ends of the modelled region

are enforced.

N,(0)=0 (9)
Qq(2)=0 (10)
By(a)=0 (11)
N;+N,=Applied Load (12)

Further, the following displacement matching conditions are applied.

ul(x,-.Sh )=u2(x,.5h

1 2)
U, (0)=Ug(0) (14)
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U2(0)=U3(0) (15)
8,(0)=8,(0) (16)
It should be noted that a 32 and 53 matching condition cannot be applied at
this level of modeling since it would amount to specifying both W and

6’12. Consequently, there is a displacement discontinuity at the de-

Q
lamination tip. The effect of this will be discussed subsequentiy. To
eliminate rigid body displacements, U1 is set to zero at the left end. The

following solutions can then be obtained for the resultants in sublaminates

1 and 2.
. S.X S, X
Nl-ale 1 +aze 2 +€A11(1) (17)
mn 2S1X_. .SoX
_ S, X S,X
Ml-alkle 1 +a2k2e 2 (19)
_ S, X 3,X
M2—alk3e 1 +a2k4e 2 - {(20)

The interlaminar shear and peel stresses between sublaminates 1 and 2 can
be obtained as

_ S.X
Tl'alsle 1 +a232

_ . . 2.5.X 2 S,X
Pl—(k1+.bh1)(alsl e 1 )+(k2+.5h1)(a252 e 27) {22)

In the above solutions, the k parameters are dependent on the eigen values

eS2% (21)

and the stiffness of sublaminates 1 and 2, the a parameters depend on the k
parameters and the initial crack length a, and € is defined as

e=a(h *hy) /(A1 (1) 11 (2)) (23)
where o is the applied uniform axial stress. Complete expressions for the
eigen values and the a and k parameters can be found in the Appendix.

Proceeding on to sublaminates 3 and 4, the following solutions can be

written.
N3=0 (24)
Ma=¢;sinh wyx+¢,C0Sh wax (25)
where ¢2=a1k3+a2k4, (26)
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6,=-, coth wy a (27)

and | “’3=“‘55(2)/011(2))0'5 (28)
Ng=e(A11(1)P11(2)) (29)
M4=a1k1+a2k2 (30)

The corresponding displacement solutions are provided in the Appendix.

The compliance of the specimen can be evaluated as
C=2U4(a)/P (31)
where P/2 is the load applied to the modelled section. The total energy
release rate for the modelled section i.e. the total energy release rate GT

per crack is then given by

6=P%/2 w (dC/da) (32)
where w is the specimen width. Use of the previously described solutions

leads to the following expression.
2

_.P 1 1 _ )
Cr= 2w? (311(1) Anm + Ane th-bh (33)

where the quantities Il and 12 contain exponential terms dependent on the
initial delamination Yength. Using the virtual crack closure technique,
from the relative displacements in the cracked portion and the interlaminar
stresses ahead of the crack tip, the mode I and mode II energy reiease rate
contributions can be obtained. The mode III energy release rate is zero
from the assumption of plane strain. The mode Il energy release rate is
given by

G = }ii%?%/: Ti(z - §)Au(z) dz (38)
where § is the virtual crack step size. The result of the limiting process
is zero if there is no singularity in the stress fie]dlo. So, the limit is
usually taken as the crack step size & tends to a small value, say A, based

on the decay length or the Tength required to capture the essential fea-

tures of the stress and displacement fields near the crack tip. The decay



length is dependent on the eigen values Sy and S, In this study, the

value of A has been set to
A0=-25(1/s1 + 1/52) (35)
since 1t reasonably fulfills the criterion given above. In a simiiar
fashion, the mode I energy release rate can be obtained based on the normal
stress (P) and the w displacements near the crack front. The normal (peel)
stress estimate 1s inaccurate due to the absence of thickness strain.
Hence, an alternate approach was used to estimate GI’ the mode I energy
release rate. The total energy release rate for this problem is made up
entirely of GI and GII (GIII=0)' From an estimate of GT and GII’ an
estimate for GI can be obtained simply as
G=6r-6yg

The critical load for a given specimen can then be evaluated based on an

(36)

appropriate fracture law. This is illustrated in the following section.

Results and Discussion

The solutions derived in the previous section have been used to modetl
the behavior of [i25/90n]s T300/934 Graphite Epoxy specimen for n values of
.5.1,2,3,4,6,and 8. These correspond to the specimen tested by Crossman
and Wang7. The specimen width and length were fixed at .0381 m and .Cl5m
respectively, as in the tests. The solutions were generated using a simple
computer program based on the closed form expressions for the interlaminar
stress and energy reiease rates. The applied load was set to 100 MPa, of
the same order as in the tests.

An example of the total energy release rate variation with the crack
length is presented in fig. 5. The asymptotic value of GT is denoted by
GTO in the figure. It can be observed that after a certain crack length.
the GT is independent of the crack length. On the basis of curves like the
one shown in fig. 5, the crack length was fixed at 10 ply thicknesses for
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the remainder of the study. The dependence of the mode II contribution of
the energy release rate on initial crack length (a) is depicted in fig. 6.
Typical interlaminar shear and normal stress profiles are presented in
f{gs. 7 and 8 respectively. The corresponding energy release rates have
also been calculated and are presented in Table 1 and fig. 9.

In order to evaluate the critical loads, an appropriate mixed mode
fracture law has to be applied, based on the calculated energy release
components. Since the calculated mode split shows only a small variation
with n, the simple Griffith criterion GT=GTc has been used to scale the
stresses to obtain the critical delamination growth stress (oc) and strain
(ec) values. The critical energy release rate GTc was chosen as 415 J/m2
to obtain the critical stresses and strains listed in Table 1. This value
of GTc is larger than GIC to account for the presence of mode II and the
fact that GIIC is about four times GIc for the material system under
consideration. The critical strains are piotted against n, the number of
90° plies in fig. 10. The experimental results of ref. 7 and the predic-
tions of refs. 8 and 9 are also presented in the figure for comparison.
The predictions of the model developed in this paper are represented by the
solid line while the experimental resuits are shown as filled squares. The
classical laminate theory and finite element critical strain predictions of
refs. 8 and 9 are represented by trianglies with a connecting line and a
dotted line respectively.

In the experiments, the local delamination phenomenon was observed as
the predominant failure mode only for the n=4,6 and 8 specimens. The shear
deformation model presented in this baper provides good agreement with the
experimental data in this range. For n<4, edge delamination either in the
mid plane or in the 25/90 interface was observed in the tests. Hence, the
predictions of the local delamination models 1in this region are not of
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consequence as long as they do not predict critical loads lower than those
predicted by edge delamination models. Thus, it can be seen that the shear
deformation model predicts the observed behavior with reasonable accuracy
and can be used in conjunction with an appropriate edge delamination model
to predict critical loads accurately for the complete range of n values.
The edge delamination model presented in References 6 and 12 can be used
for this purpose. However, a separate model is required to account for the
mid-plane (Mode I) edge delamination behavior.
Conclusions

A shear deformation model has been developed to analyze local delami-
nations growing from transverse cracks in 90° plies located around the mid
plane of symmetric laminates. The predictions of the model agree reason-
ably with experimental data from [t25/90n]s T300/934 Graphite Epoxy lami-
nates. The predicted behavior is such that, in combination with an edge
delamination model, the critical 16ads can be predicted accurately in the
range of n from .5 to 8.

Acknowledgements

The authors gratefully acknowledge the financial support provided by
NASA under grant NAG-1-637 for performing the research reported in this
paper. The authors also wish to thank Mr. A. Badir for help in verifying
the analytical model.
References
(1] Wilkins, D.J., Eisemann, J.R., Camin. R.A., Margolis, W.S. and Benson.
R.A., "Characterizing Delamination Growth in Graphite-Epoxy," in Damage in

Composite Materials, ASTM STP 775, K.L. Reifsnider, Ed., pp. 168-183

(1982).

11



(2] O‘Brien, T.K., "Mixed-Mode Strain Energy Release Rate Effects on Edge

Delamination of Composites," in Effects of Defects in Composite Materials,

ASTM STP 836, pp. 125-142 (1984).

(3] Wang, S.S. and Choi, I., "The Mechanics of Delamination in Fiber
Reinforced Composite Materials. Part II - Delamination Behavior and Frac-
ture Mechanics Parameters," NASA CR-172270 (1983).

(4] Wang, S.S., "“Edge Delamination in Angle Ply Composite Laminates,"”

Proceedings of the 22nd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics

and Materials (SDM) Conference, Atlanta, Georgia, 6-8 April, 1981, pp.

473-484 .
[5] 0'Brien, T.K., "“Characterization of Delamination Onset and Growth in a

Composite Laminate," in Damage in Composite Materials, ASTM STP 775, K.L.

Reifsnider, Ed., pp. 140-167 (1982).
[6] Armanios, E.A., and Rehfield, L.W., "Interlaminar Analysis of Laminated

Composites using a Sublaminate Approach," Proceedings of the 27th AIAA/

ASME/ASCE/AHS Structures, Structural Dynamics and Materials (SDM) Confer-

ence, San Antonio, Texas, 19-21 May, 1986, Part 1, pp. 442-452. AIAA Paper
86-0969CP.

(77 Crossman, F.W., and Wang, A.S.D.,"The Dependence of Transverse Cracking
and Delamination on Ply Thickness in Graphite/Epoxy Laminates," in Damage

in Composite Materials, ASTM STP 775, K.L. Reifsnider, Ed., pp. 118-139

(1982).
[8] O'Brien, T.K., “Analysis of Local Delaminations and Their Influence on

Composite Laminate Behavior," in Delamination and Debonding of Materials,

ASTM STP 876, Johnson, W.S., Ed., pp. 282-297 (1985).
(9] Law, G.E., "A Mixed Mode Fracture Analysis of (i25/90n)s Graphite/Epoxy

Composite Laminates," in Effects of Defects in Composite Materials, ASTM

STP 836, pp. 143-160 (1984).

12



{10] Armanios, E.A., "New Methods of Sublaminate Analysis for Composite
Structures and Applications to Fracture Processes,” Ph.D. Thesis, Georgia
Institute of Technology (1984).

[11] Armanios, E.A., Rehfield, L.W., and Reddy, A.D., “Design Analysis and
Testing for Mixed-Mode and Mode II Interlaminar Fracture of Composites," in

Composite Materials: Testing and Design (Seventh Conference), ASTM STP 893,

J.M.Whitney, Ed., pp. 232-255 (1986).
(12] Armanios, E.A., and Rehfield, L.W., "Sublaminate Analysis of Inter-
Taminar Fracture in Composites: Part I - Analytical Model", submitted for

publication in the Journal of Composites Technology and Research (July,

1988). v

13



Appendix A

Sublaminate Analysis for Local Delaminations

Interlaminar Stresses and Energy Release Rates

A generic sublaminate is shown in figure 3 along with the notations and sign
conventions. The interlaminar normal (peel) and shear stresses are denoted by P
and T respectively with the ¢ and b subscripts for the top and bottom surfaces
respectively. The axial force resultant, shear force resultant and bending moment
resultant are denoted by N, Q and M respectively. Plane strain conditions are
assumed to prevail in the z — z plane and the thickness strain ¢, is neglected. These
assumptions lead to considerable simplification in the analysis. The displacements

in the z and z directions are assumed to be of the form
v = U(z)+28(z) (A1)
w = W(z) (A.2)

Here U represents the axial stretching and W is the transverse (thickness direction)
displacement. This formulation recognizes shear deformation through the rotation

B. The equilibrium equations take the form

N.+T,-T, = 0 (A.3

Q,J,‘_*_PL—_PO = 0 (:X-;:l




2

M.~Q+3T+1) = 0 (A.5)

where i is the thickness of the sublaminate. The constitutive equations in terms of

the force and moment resultants are

N = x‘luU,z + Bllﬂ,z (.‘&G)
Q = Ass(B+W.) (A7)
A’I = BuU’z =+ Dllﬂ,z (.ALS)

where A, B and D are the classical laminate theory axial, coupling and bending

stiffnesses defined in the customary manner as

Ay = hClldz
)
A
2

B” = 'C’“ZdZ
)
kb
2

Du = hCuz dZ
2
13
2

Ass = Cssdz

Here, the Cs are the material moduli. For the case of plane strain in the z - =

plane, the Cs are defined as follows.

Oz Cn Cis O €zz
0z (= | Cizs Cn 0 €22 (A.9)
Tzz 0 0 CSS Yz=

The boundary quantities to be prescribed at the sublaminate edges are
N or U
M or f

Q or W
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Further, at the interfaces between sublaminates, appropriate reciprocal traction and
displacement matching boundary conditions have to be used.

The four sublaminates along with the loads acting on each are shown in figure 4.
Setting P; and T as shown automatically satisfies the traction matching boundary
condition at the 1-2 interface. From symmetry, we get w = 0 and zero shear stress
along the bottom faces of sublaminates 2 and 3. This leads to w = 0 in sublaminates
1,2 and 3. Thus, W has been prescribed in these sublaminates and the vertical shear
force resultant Q) cannot be prescribed at both ends of the sublaminates. Conse-
quently, the calculated peel stress distribution will not be correct. In addition, at
the 2-3 interface, the fs cannot be matched, since in these sublaminates, specifying
B is equivalent to specifying @ (through eq. A.7). Inspite of these simplifications,
reliable energy release rate components can be estimated based on the interlaminar
shear stress distributions. The mode I contribution can then be evaluated using the
total energy release rate, which is not affected significantly by these simplifications.

For the (£25/90,), laminates under consideration, B,; is zero in all the four
sublaminates. For sublaminates 1 and 2, the equilibrium equations and constitutive

relationships can be written as

Ny.~Ty = 0 (A.10)
Npyz+Ty = 0 (A.11)
Qu:—P =0 (A.12)
Quz+Pi—P, = 0 (A.13)
Mi.+%T -0, = 0 (A.14)
Mo+ BT -0, = 0 (A.15)

Ny = AngUiez (A.19)
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N, = AnpUs. (A17)
Q1 = Assqybr (A.18)
Q2 = Assf (A.19)
M, = Dupbis (A.20)
M, = Dbz (A.21)

The subscripts in brackets refer to the sublaminates to which the stiffness coefficients

correspond. Equations A.14, A.15 and A.12 can be rewritten in a modified form as

Ml.x+%lN1,z = Assq)b (A.22)

My =N, = A (A.23)
P = Qe

= M. +%7,. (A.24)

Matching the u displacement along the 1-2 interface implies

() = o)

or U, - hf& U, + %2,32 (A.25)

Combining the equations to eliminate the displacement and interlaminar stress
terms leads to the following homogeneous coupled system of ordinary differential

equations.

Niz+ Ny = 0 (A.26)
h Assq) _ .
Ml.:::z: + ’QJ'Nl,zix - Dll(l) ]\ll =0 (:\21)
h, Ass(2 52
My — 5 Nyor — = A28
2, 2 D;gMz 0 (A.28)
NJ - h Af] _ 1\72 _ h’) }\{2 _ 5
All(l) —'ZLDH(U A“(g) TD11(2) =0 (A.29)




The solution is assumed of the form

(v ) 4
N A
R S I T (A.30)
1 Ml A3
| L M2 | ( Ad

Substitution of this solution into the governing equations results in the following

system of algebraic equations.

§ \ \
Sh S (34 0 f Al f 0
2 2 _ £155(1)
S 7" 0 S 1) 0 A2 o 0 L
o _oh 0 2 Ass(2 j 4 y &7 = o 0 (A.31)
P Dz 3
L A11(1) A2 7}.Du(n ?Du(z) 10 4 N

The corresponding eigenvalue problem has to be solved in order to obtain non trivial
solutions. The eigenvalues turn out to be the roots of the following characteristic
equation.

s |Bys* 4 Bys? + B3] =0 (A.32)

where

2
By = gt Tom ~ Dag (B ) - pis (%)
2
B = 2—111(—"’)%%?(% 11(2)Djﬂ1(}11 7“;_IT((;L 11(2) <%2>
2
+Zl_11(—1—)%%((}1l ll(lb%sl_%l 1(2 11(1)( >
Bs _mg%sliélflii((?) Au(l)ﬁsf((?ﬁ?

For the material system and ply stacking sequence considered, B2 > 4B, B;. Hence,

the roots can be written as

~B, ++/B} - 4B\B
s:O,:}:\’ 22y D 13 (A.33)

2B,
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Only the zero and positive roots of eq. A.33 are considered as they give exponentially
decaying solutions, leading to finite values for the resultants at the sublaminate ends.

Hence, the solution for N; can be written as

N; = a,e* + ae™" + a (A.34)

Using this in eq. A.26 yields
Ny = —a,e”* — a2e®* + ay (A.35)

Substituting IV} and NV, in eqs. A.27 and A.28 provides the solutions for the bending

moments as

M; = a1k1e™* + azkqe™® (A.36)
M2 = alkéeslx + azk4652z (."\37)
The k parameters in the above solutions are defined as follows.

hy 2

o551 R
Asar) ; (A.33)
D11(1)

hy 52
ko = Ti2— (A.39)
s5(1) _ 2
1) 2

ky

hy 2
L P q
k3—m—Ts—2 (.—\tO)
D11z 1
ho 2
kg = PRE (A.11)

:I55 2 2
Diy) ~ 52

If P is the applied force and w represents the specimen width,

f
R
S’

Nt Ny = o (A
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Using this in conjunction with eq. A.29 allows determination of the constants a;

and a;. The following solutions for the stresses and the resultants can then be

obtained.
— sz sz P All(l)
N1 = a¢ + aqe 2T 4+ 2_1;111(1) ¥ All(2) (A43)
- s sz, P A
Tl = Nl,::
= a15:€"% 4 a5, , (A.45)

Pl = Ml,xz + leTl,x
= (k + %’-)alsfe"’ + (k2 + -%J-)azsge’”’ (A.46)
The constitutive equations are used to write down the displacement solutions. The

rigid body displacements of sublaminates 1 and 2 are matched (in order to satisfy

the displacement continuity condition) to obtain

- a, AT as sz P 1 N
D= Taes® T Ines® T AN T Angs T (B0

= -7 aj 51T a 52T P 1 A 43
U, 11(1)51e Zu(l)sz'e + 2w A + A“(z)x +az;  (AL)
,31 = AS];(I) [alklslesxx+a2kzszeazz+ _’g_(alsleslx+a232eszz)] (A.:LQ)

B = I—S];(Z) [a1k331631’+a2k4s2e’21'+ %z(alsleslz_*_azszesgz)] (.‘-\..50)

The constants a;, a; and a3 occurring in the solutions are determined using the

boundary condtions. For sublaminate 3 the governing equations are

N3, = 0 (A.51)
Qsz+P; = 0 (A.52)

My, — Qs = 0 (A.33)



N3 = AneUss (A.54)
Qs = Ass@)fbs (A.55)
M; = Dnpbs: (A.56)

Matching U at the 2-3 interface and applying Na(a) = 0 gives

Ni = 0 (A.57)
Us = Uy0) (A.58)
—_ O _ a9
T s14dn( S24n(2) +as (A.59)

In order to solve for the bending moment, eqs. A.53, A.55 and A.56 are combined

to obtain

M;=0 (A.60)

The solution of eq. A.60 can be written as
M; = ¢ sinhwsz + ¢4 coshwsr (A.61)
where the quantity w; is defined by

2 Ass(2
= A.
w3 F_Llu(z) (A.62)

Since the 8 matching conditon cannot be used at the 2-3 interface, the (remaining)

boundary conditions are

M. = 0
3(a) (A.63)
The ¢s can be solved using the boundary conditions A.63 as
$2 = arkz+arky (A.64)

$¢1 = —¢rcothwsa (A.63)
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The solution for sublaminate 3 can be completed by writing the following expres-

sions.

Qs = ¢wicoshwyz + dwzsinhwsz (A.66)

ﬂ3 = AS];(2) [45“4)3 coshwsz + ¢2w3 sinh ng] (AGT)
_ Assa .

P, = D;—g—[d)l sinhwsz + ¢, cosh wsz] (A.68)

The equilibrium equations for sublaminate 4 are

N4’z = 0 (A'Gg)
Q4,x = 0 (A70)
M4,.1: —-Q4 =0 (A-Tl)

The constitutive relations take the form

Ny = AnaUse (A.72)
Qi = Assy(Ba+Wy,) (A.73)
Al‘; = Dll(l)ﬂ4,x (.‘kT-l)

Using eq. A.69 with the boundary condition Ny(a) = Z% yields
N, = 2% (A.73)
Similarly, using eq. A.70 with Q4(a) = 0 results in
Q:i=0 (A.76)
Matching M; and M, at the 1-4 interface and using eq. A.71 gives

M4 = alk; + (12].72 (:XTT)
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The U, displacement is obtained by integrating eq. A.72 and using the displacement

matching boundary condition U(0) = U,(0).

_P_1 ay az
Us= %Ku(x)x + s1411(1) + s241101) +as (A.78)
Similarly, integrating eq. A.74 and setting S4(a) = 0 gives
= ok 3 L —
Be= DTI(T)[alkl + azk;)(z — a) (A.79)

Using the solutions for Q4 and 84 and the boundary condition W4(0) = 0 in eq.
A.73 yields the following solution for W,.

Assi . . 2
= mi(ll)[alkl + aska)(% — az) (A.80)

In order to determine a,, a; and a3, the following boundary conditions are used.

M) = £

,31(0) = ﬁ4(0)
Ul(-—l-i-a) = 0

It is convenient to define the following parameters.

o = gE(k+ ) ' (A.81)
9, = D'%E (A.82)
6, = Ziz(l—)(k2+%1-) (A.83)
8, = D%“Ll) (A.84)
8y = 63— 6y + (64— 3)a (A.85)

The nominal (far field) strain is given by

P 1 2
= ; A.S6
¢ EAI](I) + A11(2) ( )
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The a parameters are obtained as

ay = A11(2)€Qa—-§di4£ - (AST)
ay = _Au(z)eﬁx%—fzﬂ (A.85)

— _ _ a -8 (l-a) __ a ~s2(1~1)
as G(l a) '517:'1(—1)-6 me (A89)

The specimen compliance C is defined as the ratio of specimen extension to applied

load. This is obtained as

Cc = @%ﬂl
— 2 Pa a as_ :
P {2WA11(1) + SxAn(l) + 32-411(1) + a3} (A.QO)

The total energy release rate associated with the crack (delamination) growth under

a constant load P is given by
_ P*dC
Gr = 5% da | (:\.91)

Using the compliance expression from eq. A.90 in eq. A.91 yields the following

expression for Gr.

GT=P2< 1 - 1 +I"I2> ('\9‘7)
2w? \Auw A + 4Aue) ! T

where

= 1 74__1_1“111 2) 6,05 — 6,6, ( 1—e~nl-9) 1 _ e=ml-9) ) R
I Ay + A Aua 03 31 33 (A.93)

I = 1 A11(2) (63 + 84a)e™1U=2) — (9, 4 8ra)e™2(—2)
Ay + Ane) Aug) 94

(A.04)

The individual fracture mode contributions to the energy release rate can be cal-
culated using the virtual crack closure method, based on the interlaminar stresses

and displacements in the vicinity of the crack tip. From the assumed plane strain
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condition, the mode IIT contribution is zero (Gj;y = 0). The mode II energy re-
lease rate, Gy, is calculated using the virtual crack closure technique while Gy is

evaluated using

Gr=Gr—Gyy (A.95)

G 1 is calculated from the interlaminar shear stress and relative sliding displacement

as
.1 [
G =lim /0 Ty(z — 6)Au(z) dz (A.96)

In the absence of a singularity in the stress field, the result of the limiting process
leads to the trivial result Gy = 0. Hence, the limit is calculated as § tends to
some finite value, say A. The value of A is chosen depending on the decay length
associated with the problem i.e. the length within which the presence of the crack
significantly alters the specimen response in comparison with the corresponding far
field values. Evidently, the decay length in this problem is dependent on the eigen-
values s; and s,;. The following value of A has been chosen in order to reasonably

fulfil the decay length criterion.

=11 .1 7
A-—- 4(31 +32 (.‘3&.91)

The relative sliding displacement Au is based only on the difference U, — Us so that
the kinematic condition of zero relative displacement at the crack tip is fulfilled.

This also simplifies the calculations. The mode II energy release rate component is

obtained as

Gy = Lokl (A.93)
where I3 and I, are defined as
1 1 a Q- - —s .
L= (Au(l) + Au(z)) (St+8) [m-e +a -] (a00)
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SoA — 14728 Ay + Ang) »
51 ay + 52 a2) All(]) (A.].OO)

Transverse Crack Spacing

hear Deformation Mode

The model presented so far has dealt with delaminations growing from a trans-
verse crack. The same model can be modified to predict the spacing of these trans-
verse cracks. In order to accomplish this, the delamination effect has to be isolated
from the model. This can be achieved approximately by letting the crack. length
a tend to zero. This yields an approximation since the boundary conditions are
not accounted for properly by this limiting process. To get an accurate shear de-
formation model, we consider only sublaminates 1 and 2 and apply the following

boundary conditions for sublaminate 2.
N0) = 0 (A.101)
M,0) = 0 (A.102)

Using these boundary conditions in eqs. A.37 and A.44 yields two equations in a,

and a, which can be solved to obtain

k., P A

RN gy N7 A + 4ug) (4.103)
_ ki A
2 = f—F, Q— A11(1) + A (4.104)

The interlaminar shear stress can now be obtained using eq. A.45. The saturation
crack spacing corresponds to the distance from the crack where the broken plies
regain their uniform stress/strain state i.e. where the interlaminar shear stress has
decayed down to its far field (uniform) value. Practically, this distance is calculated

by looking for the z where the interlaminar shear stress is some small fraction (say
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.001) of its maximum value. The maximum shear stress evidently occurs at z = 0
and is given by

Tl(ma.z) = @151 + @259 (A105)

The crack spacing A can then be determined by solving the following transcendental

equation.

1A A 4
e oo (100

Membrane Model
A simpler model can be used to estimate the saturation spacing of the transverse
cracks. This model treats the sublaminates as membranes i.e. the bending effects

are ignored. The equilibrium equations for a generic membrane sublaminate are

N,+T,-T, = 0 (A.107)

br-1)-@ = o (A.108)

+

The constitutive equations take the form

N

(Au - %}) U, (A.109)

Q = Assp (A.110)

The displacements are assumed to be of the following form.

u = U(z)+28(z) (A.111)

w = 0 (.‘-\.112)
The following governing equations can now be written

Nl,.z:_Tl = 0 (.&113\}

Noy+Ty = 0 (A.111)




Br-q =0

h _

Qle -Q2 =0
N, = ‘YlUl.z
N, = ’)’2U2,x

Q1 = ASS(I)ﬂl
Q2 = Ass2)B2

U, - b-zlﬂl = U+ %zﬁz
where the s are defined as
B2
N = A11(1) - D%((%
= A B121 2
Y2 = 11(2) — D;((_z-}
Eqs. A.113 and A.115 can be combined as
Ql = %’LNI,:
Using egs. A.119 and A.117 in this leads to

_h 1
B = 7" m7lUl,x5

Following a similar procedure for 8, yields

_h 1
ﬁ2 = ‘22 A55(2)71U1,:x

Using these two relations in eq. A.121 leads to
0= (%) gt == (%) 20
Assy T 2 ss(2) T
Combining eqs. A.113, A.114, A.117 and A.118 gives

YUtz + 72U222 = 0

15
(A.115)

(A.116)
(A.117)
(A.118)
(A.119)
(A.120)

(A.121)

(A.122

(A.123)

(A.124)

(A.125)

(A.126)

(A.127)

(A.123)
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Substituting this into eq. A.127 results in

h\? hy\? _
Ul,x:r: - l:(?l') Z:SZSIB + ('22) 15151(—2-)-} Ul,z:::x: + %Ul,zx = 0 (A129)

The characteristic roots of this differential equation are

s=0,0,% 3 71’+72 — (A.130)
1
Tz [(_21) sy T (_22) Zss(z)]

The solution for U; can then be written as

U1 '——-Ale”:"*‘Agl' +A3 (A131)

where the As are arbitrary constants to be determined from the boundary condi-
tions. The root s, is the positive root such that a decaying solution is obtained in
the negative z region. For the special case of By = Biy(z) = 0, the nonzero roots

can be written in a simpler form as

1
si= 4(Au(1) + Aue) > 5 (A.132)
11(1)A11(2) _hT + M
Ass(1) Ass(2)
The interlaminar shear stress can be obtained as follows.
Tl = Nl,z:
= 71U1,J:x
= ’YlAls'feslz (“&.133)
The maximum shear stress is
Tl(mar) = 71Alsf (A134)

Then, the saturation crack spacing A corresponds to

e = (0.001 (A.135)
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Shear Lag Model

This model allows for a nonlinear displacement field through the thickness of the
sublaminate. Its fundamental assumption is that the shear deformation neglected
in the classical theory of bending can be estimated using the shear stress. The

sublaminate axial force equilibrium condition can be written as
N:+(T:-T,)=0 (A.136)
The axial stress is assumed to be uniform and is given by
0o =4 (A.137)
The shear stress is estimated as follows

Ozz,z = —Ozzzx

= LoD (A.133)

This can be integrated to obtain

0p =Lz lh,  Lp D (A.139)

Neglecting transverse displacement, the axial displacement can be obtained by in-

tegrating the shear strain, which in turn is obtained from the shear stress.

we = &=
= C};; [(Tt - Tb)% + —’—Z_hT + T] ("\*'140)
w = UG+ g [(T- 5 + (T + T (A.121)

where U(z) is the mid-plane axial displacement. This displacement expression can

be used to obtain an improved axial stress estimate as follows.

L}
Ozzr — Cllu,;r:
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1 2
= Cu|Ust 5o~ (T = T) s = + (T, + Tp).nz (A.142)
2C55 h

The corresponding axial stress resultant can be written as

h

N = /5 0,,dz

2
= ¢y [hU,z + 5o (T, - T,,),,] (A.143)

The governing equations for the sublaminate are thus eqs. A.136 (equilibrium),
A.141 (displacement fleld) and A.143 (constitutive relationship). Using these to

model sublaminates 1 and 2 results in the following governing equations.

Nl,z - T1 = 0 (A144)
N2,:x: + T2 = 0 (A145)
_ B2
N, = Cll(l) [hlUl'z — 37 ss(l)Tl’x] (A.146)
h? -
N, = Ciy [h2U2,z + 57 552) Tl',,J (A.147)
- 1 22 1o
uy, = U+ m [—TIFI- + le] (A.l-lb)
— 1 22 ,
uy = U, + m [Tlﬁ-z_ + le] (A.149)

Displacement continuity at the 1-2 interface implies

u(z, —bgl) = uy(z, %2) (A.130)

_ _3T1[h1 hz] A 151
or U = U= oo + o (A.151)

Equation A.146 can be rewritten as

__N h -4 124
Uiz = m + mTl’” (A.132)

Combining egs. A.147, A.151 and A.152 results in

h,N hoT) 2 [ h h ]} -
7o 1 1 2 :
N2 =Cny {hlcu(l) 3 Clss) + Css(2) (4.133)
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But from eqs. A.144 and A.145, we have

NQ',; = '—T1 = —Nl,z (A154)

Using this in the differentiated form of eq. A.153 leads to

1 1 _1[_ A h ] A 155
[thu(z) + h1C11(1)] My = 3 [Css(l) * Css(2) Nigzz (A.155)
The nonzero characteristic roots of this equation are given by
C C h1Cuq) + hoC )
2 _ 55(1) 55(2) 1011(1) + 22011 15
s°=3 (hlcll(l)) (h2011(2)> (h2C55(1) + h1Css(2) (4.156)

This is the same as in the membrane model except, for the factor 3 which is 4 in the
membrane model. This difference is related to the fact that the axial displacement
distribution through the thickness is parabolic in the shear lag model and linear in
the membrane model. The crack spacing A for the shear lag model is determined

as in the case of the membrane model but using the modified characteristic root.



Table 1 Summary of Resuits

number of Gr Gu/Gr o, €.
90° plies | J/m? MPa %

1/2 2.404 0.276 | 1313.9 | 1.6747

1 6.752 0.275 | 784.0 | 1.1685

2 22.849 0.267 | 426.2 | 0.8058

3 51.049 0.261 | 285.1 | 0.6427

4 93.603 0.256 | 210.6 | 0.5444

6 228.871 0.250 | 134.7 ] 0.4264

8 440.065 0.247 97.1 | 0.3555




Symmetry

Delamination j /—Plane

o _ . / \ Transverse
90 Plies

Crack

Fig. 1  Specimen Cross Section

free ' free
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Plane w=0 w=0

Fig. 2 Modelled Region and Sublaminate Scheme
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